[Problem Set 5 posted, due on Apr. 7.] Last time $1^{st} \& 2^{nd}$ variation of length lenengy Given a curve $\mathscr{V}^{(t)}: [a,b] \rightarrow (M^n,g)$, defined $E(\mathscr{V}) := \frac{1}{2} \int_a^b g(\mathscr{V},\mathscr{V}) dt$ energy \leftarrow dep. on parametric $L(\mathscr{V}) := \int_a^b [g(\mathscr{V},\mathscr{V}) dt]$ length \leftarrow indep. of parametrization

Consider a 1-parameter variation of curves (with fixed end points).

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
Smooth

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
Smooth

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
Smooth

$$Y(t,s) = Y_{s}(t) : [a,b] \times (-\varepsilon,\varepsilon) \longrightarrow M$$
Smooth

$$Y(t,s) = Y_{s}(t) : L(Y_{s}) \text{ are smooth fen st s}$$

$$OSMPUte \frac{d}{ds}\Big|_{s=0} E(T_{s}) \text{ and } \frac{d^{2}}{ds^{2}}\Big|_{s=0} E(T_{s})$$

$$Variation field$$

$$V(t) := \frac{\partial V}{\partial S}\Big|_{s=0}$$

$$E'(s) = -\int_{a}^{b} \langle \frac{\partial V}{\partial S} , \nabla_{2} \frac{\partial V}{\partial t} \rangle dt$$

At a critical pt 3. for E, i.e a geodesic. then we compute

$$\frac{Prop:}{E'(o)} = \int_{a}^{b} \langle \nabla_{2} \vee, \nabla_{2} \vee \rangle - \langle R(\frac{\partial Y}{\partial t}, \vee) \frac{\partial Y}{\partial t}, \vee \rangle dt$$

$$\frac{Proof:}{E'(s)} = -\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial s}, \nabla_{2} \frac{\partial Y}{\partial t} \rangle dt$$

Differentiere w.r.t. S, evaluate at S=0,

$$\begin{split} E'(o) &= \frac{d}{ds} \Big|_{s=o} \left(-\int_{a}^{b} \langle \frac{\partial Y}{\partial s}, \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial t} \rangle dt \right) \\ &= \frac{d}{ds} \Big|_{s=o} \left(\int_{a}^{b} \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \right) \\ \stackrel{\text{functive}}{=} \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s} \rangle + \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s} \rangle dt \\ &+ \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle + \langle R(\frac{\partial Y}{\partial t}, \frac{\partial Y}{\partial s}) \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle + \langle R(\frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s}) \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \\ &= \int_{a}^{b} \langle \nabla_{\frac{a}{2}} \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s} \rangle - \langle \nabla_{\frac{a}{2}} \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s} \rangle dt \end{split}$$

<u>Remark</u>: One can also consider <u>closed</u> geodesics M $\gamma : S' = \frac{|R|}{2\pi Z} \rightarrow M$

without end points.

The 2nd varietion formula has important geometric and topological implications. Note: $E'(0) = \int_{a}^{b} ||\nabla_{\underline{2}} \vee ||^{2} - \langle R(\frac{\partial Y}{\partial t}, \vee) \frac{\partial Y}{\partial t}, \vee \rangle dt$

sectional curreture term

Cor: Suppose (Mⁿ.g) has negative sectional curvature, le K<0.
 THEN, any geodesic X: [a,b] → M is (strictly) locally energy / length minimizing (with end points fixed).
 i.e. any critical pt of E or L must be local minimum.
 E.g.) On a hyperbolic surface (Σ²_{1,2}, g_{hyp}) of K = -1.

For positively armed space, we have the following : Synge Theorem : Suppose (M",g) is a compact, oriented Riem. manifild s.t. (i) n is even (ii) K>0 everywhere THEN, TI(M) = 0, ie. M is simply - connected. Proof: Suppose NOT. ie TI(M) = 0. So , ∃ a (smooth) closed loop &: S' → M which is NOT Contractible to a pt. inside M, ie 0 = [7] E TI (M) (M.S) 2 free hometopy class We want to do a minimization (writ E) with the free hometopy class [8] = 0 ($\hat{\mathbf{y}}$: minimizer in [\mathbf{y}] $\min \{ E(\hat{\mathbf{x}}) : \hat{\mathbf{x}} \in [\mathbf{x}] \} = E(\hat{\mathbf{x}})$ (:: M cpt =) existence of minimizer ?)

Note that
$$\hat{\mathbf{y}}$$
 is a non-twivel loop since $[\hat{\mathbf{y}}] = [\hat{\mathbf{y}}] \neq 0$.
AND: $E'(0) = 0$ A $E''(0) \geq 0$ at $\hat{\mathbf{y}}$
for any variation field V along $\hat{\mathbf{y}}$
Write: $\hat{\mathbf{y}} : [0,2\pi]/_{0,\sqrt{2\pi}} \rightarrow M$ Geodesic
GOAL: Find a V st $E''(0) < 0$
Let P: TpM \xrightarrow{i} TpM be the parallel transport
map along $\hat{\mathbf{y}}$ from $\hat{\mathbf{y}}(0)$ to $\hat{\mathbf{y}}(2\pi)$
 $\hat{\mathbf{y}}(\pi)$
 $\hat{\mathbf{y}}(\pi)$

Note: I(V,V) = E'(o) along the variation field VSymmetry of $R \Rightarrow I(V,W)$ is a symmetric bilinear form.

Prop: Let V be a Jacobi field along a geodesic V: [a.b] -> M. THEN. V E Ker(I)", ie

I(V, W) = 0 $\forall W$ u.f. along Y st. W(a) = 0 = W(b)In fact, the converse also hold.

Proof: Recall the index form

$$I(V,W) := \int_{a}^{b} \langle \nabla_{y}V, \nabla_{y}W \rangle - \langle R(y',V)y',W \rangle dt$$

Integrate by part, using W vanishes at the and pts.

$$I(V,W) := \int_{a}^{b} \langle \nabla_{y}, \nabla_{y}, V, W \rangle - \langle R(x',V) \rangle \langle W \rangle dt$$

$$= - \int_{a}^{b} \langle \nabla_{y}, \nabla_{y}, V + R(x',V) \rangle \langle W \rangle dt$$

$$= 0 \quad (3)$$

Suppose $\forall_{S} : [a,b] \rightarrow M$ is a geodesic for EACH $S \in (-E,E)$ i.e. $\forall_{S} \in (-E,E)$, $\forall_{S} : \forall_{S} := 0$ mon-linear 2nd order ODE System. IDEA: If we differentiate the geodesic e_{2}^{2} w.rt. S at S=0.

then we obtain the Jaubi field eq^2 (J) for $V := \frac{\partial Y}{\partial s} \Big|_{s=0}$ (Ex: Prove this!)

 $a_{i}^{"}(t) + \sum_{x=1}^{n} a_{i}(t) R(x', e_{i}, x', e_{i}) = 0$ Ai く=フ 2nd order linear system in ai(t)

(or: (J) is uniquely solvable on [a, b] for any given initial data V(a) and $V(a) := (\nabla_{y} \cdot V)(a)$. clepends lines-ly on initial data

Note that: Any vector freid V along & decompose: $\bigvee = \bigvee_{\substack{\uparrow \\ tanjent}}^{T} + \bigvee_{\substack{\uparrow \\ tanjent}}^{T}$

(i.e. $V^{\perp} \equiv 0$) <u>Prop:</u> Any tangential Jacobi field V along Y has the form V(t) = (A + B(t - a)) Y'(t) for some constants $A, B \in iR$ linear in t

Pf: Solving uniquely (J) with initial data

$$V(a) = A Y'(a)$$
 and $V'(a) = B Y'(a)$.

<u>Prop</u>: Suppose V_S: [a,b] → M is a 1-parameter family st. V_S is a geodesic for EACH se(-E.E). THEN, the variation field V := $\frac{\partial V}{\partial S}$ | stop satisfies (J). <u>Remark</u>: The converse is also true, i.e. Jawbi fields along geodesics are all "integrable". (Pf. Hw)

Prouf: Each Vs is a seadesic

$$=) \quad \nabla_{\gamma_{s}} \gamma_{s}' \equiv 0 \quad \forall s \in (-\varepsilon, \varepsilon)$$

$$(\Rightarrow) \quad \nabla_{\frac{3}{2}} \frac{3}{3} = 0 \quad \forall s \in (-\varepsilon, \varepsilon)$$

$$(\Rightarrow) \quad ((\cdot, \cdot)) \quad (($$

Evaluece at s=0,

$$\Delta^{3f} \Delta^{5f} \wedge + B\left(\frac{3f}{3\lambda}, \wedge\right) \frac{3f}{3\lambda} = 0 \quad (2)$$

۵